Skip to main content

Ensemble Methods detailed explanation

One of the major tasks of machine learning algorithms is to construct a fair model from a dataset. The process of generating models from data is called learning or training and the learned model can be called as hypothesis or learner. The learning algorithms which construct a set of classifiers and then classify new data points by taking a choice of their predictions are known as Ensemble methods.In Other words we can say "Ensemble methods is a machine learning technique that combines several base models in order to produce one optimal predictive model."

Why Use Ensemble Methods??

The learning algorithms which output only a single hypothesis tends to suffer from basically three issues. These issues are the statistical problem, the computational problem and the representation problem which can be partly overcome by applying ensemble methods.The learning algorithm which suffers from the statistical problem is said to have high variance. The algorithm which exhibits the computational problem is sometimes described as having computational variance and the learning algorithm which suffers from the representational problem is said to have a high bias. These three fundamental issues can be said as the three important ways in which existing learning algorithms fail. The ensemble methods promise of reducing both the bias and the variance of these three shortcomings of the standard learning algorithm.

Combine Model Predictions Into Ensemble Predictions

The three most popular methods for combining the predictions from different models are:

Bagging. Building multiple models (typically of the same type) from different subsamples of the training dataset.
Boosting. Building multiple models (typically of the same type) each of which learns to fix the prediction errors of a prior model in the chain.
Voting. Building multiple models (typically of differing types) and simple statistics (like calculating the mean) are used to combine predictions

Applications Of Ensemble Methods

1. Ensemble methods can be used as overall diagnostic procedures for a more conventional model building. The larger the difference in fit quality between one of the stronger ensemble methods and a conventional statistical model, the more information that the conventional model is probably missing.

2. Ensemble methods can be used to evaluate the relationships between explanatory variables and the response in conventional statistical models. Predictors or basis functions overlooked in a conventional model may surface with an ensemble approach.

3. With the help of the ensemble method, the selection process could be better captured and the probability of membership in each treatment group estimated with less bias.

4. One could use ensemble methods to implement the covariance adjustments inherent in multiple regression and related procedures. One would “residualized” the response and the predictors of interest with ensemble methods

Conclusion

Although ensemble methods can help you win machine learning competitions by devising sophisticated algorithms and producing results with high accuracy, it is often not preferred in the industries where interpretability is more important. Nonetheless, the effectiveness of these methods are undeniable, and their benefits in appropriate applications can be tremendous. In fields such as healthcare, even the smallest amount of improvement in the accuracy of machine learning algorithms can be something truly valuable.

Comments

Popular posts from this blog

Why Central Limit Theorem is Important for evey Data Scientist?

The Central Limit Theorem is at the core of what every data scientist does daily: make statistical inferences about data. The theorem gives us the ability to quantify the likelihood that our sample will deviate from the population without having to take any new sample to compare it with. We don’t need the characteristics about the whole population to understand the likelihood of our sample being representative of it. The concepts of confidence interval and hypothesis testing are based on the CLT. By knowing that our sample mean will fit somewhere in a normal distribution, we know that 68 percent of the observations lie within one standard deviation from the population mean, 95 percent will lie within two standard deviations and so on. In other words we can say " It all has to do with the distribution of our population. This theorem allows you to simplify problems in statistics by allowing you to work with a distribution that is approximately normal."  The CLT is...

Machine Learning Interview Questions - Part 1

Q1. What is Machine Learning? Machine Learning  explores the study and construction of algorithms that can learn from and make predictions on data.  Closely related to computational statistics.  Used to devise complex models and algorithms that lend themselves to a prediction which in commercial use is known as predictive analytics. Given below, is an image representing the various domains Machine Learning lends itself to. Q2. What is Supervised Learning? Supervised learning  is the machine learning task of inferring a function from labeled training data. The training data consist of a set of training examples. Algorithms: Support Vector Machines, Regression, Naive Bayes, Decision Trees, K-nearest Neighbor Algorithm and Neural Networks E.g. If you built a fruit classifier, the labels will be “this is an orange, this is an apple and this is a banana”, based on showing the classifier examples of apples, oranges and bananas. Q3. What is Unsu...

Most Used Algorithm by DataScientist

We will discuss mostly machine learning algorithms that are important for data scientists and classify them based on supervised and unsupervised roles. I will provide you an outline for all the important algorithms that you can deploy for improving your data science operations. Here is the list of top Data Science Algorithms that you must know to become a data scientist. Let’s start with the first one – 1. Linear Regression Linear Regression is a method of  measuring the relationship between two continuous variables . The two variables are – Independent Variable – “x” Dependent Variable – “y” In the case of a simple linear regression, the independent value is the predictor value and it is only one. The relationship between x and y can be described as: y = mx + c Where m is the slope and c is the intercept. Based on the predicted output and the actual output, we perform the calculation 2. Logistic Regression Logistic Regression is used for binary classificat...