Skip to main content

CondaValueError: Value error: invalid package specification

Recently I was trying to create Conda Environment and wanted to install Tensorflow but i have faced some issue , so i have done some research and done trouble shooting related to that . Here am going to share how to trouble shoot if you are getting Conda Value error while creating Conda environment and install tensorflow
.


  1. Open Anaconda Prompt (as administrator if it was installed for all users)
  2. Run conda update conda
  3. Run the installer again
Make sure all pkg are updated:





Launch the console from Anaconda Navigator and
conda create -n mypython python=3.6.8

After Installing Conda environment please active the conda now : conda activate mypython
once conda environment has been activated kindly install tensorflow 2.0 by using this command pip install tensorflow==2.0.0




once Tensorflow has been successfully install kindly run the command : pip show tensorflow
Try to Run Comman PIP Install Jupyter lab and after installing launch the console and open Jupyter notebook
Happy Learning...!!

Comments

  1. Thanks Anand its really help and guide me solve very similar issue.

    ReplyDelete

Post a Comment

Popular posts from this blog

Data Science Skills

Below are some of the data science skills that every data scientist must know: 1. Change is the only constant It’s not about “Learning Data Science”, it’s about “improving your Data Science skills! The subjects you are learning currently in Grad School are important because no learning go waste but, the real world practicality is totally different from the theory of the books which is taught for decades. Don’t cramp the information, rather understand the big picture. A report states that 50% of things that you learn today regarding IT will be outdated in 4 years. Technology can become obsolete but, learning can’t be. You should have the attitude of learning, updating your knowledge and focusing on your skills(Get your Basics clear) and not on the information you learn! This will help you to survive in this tough and competitive world (I am not scaring you, I am just asking you to prepare your best! You should start focusing on the below skills for becoming a data scientist –...

Math Skills required for Data Science Aspirants

The knowledge of this essential math is particularly important for newcomers arriving at data science from other professions, Specially whosoever wanted to transit their career in to Data Science field (Aspirant). Because mathematics is backbone of Data science , you must have knowledge to deal with data, behind any algorithm mathematics plays an important role. Here am going to iclude some of the topics which is Important if you dont have maths background.  1. Statistics and Probability 2. Calculus (Multivariable) 3. Linear Algebra 4.  Methods for Optimization 5. Numerical Analysis 1. Statistics and Probability Statistics and Probability is used for visualization of features, data preprocessing, feature transformation, data imputation, dimensionality reduction, feature engineering, model evaluation, etc. Here are the topics you need to be familiar with: Mean, Median, Mode, Standard deviation/variance, Correlation coefficient and the covariance matrix, Probability distribution...

Differentiate between univariate, bivariate and multivariate analysis.

Univariate analysis are descriptive statistical analysis techniques which can be differentiated based on one variable involved at a given point of time. For example, the pie charts of sales based on territory involve only one variable and can the analysis can be referred to as univariate analysis. The bivariate analysis attempts to understand the difference between two variables at a time as in a scatterplot. For example, analyzing the volume of sale and spending can be considered as an example of bivariate analysis. Multivariate analysis deals with the study of more than two variables to understand the effect of variables on the responses.