Skip to main content

CondaValueError: Value error: invalid package specification

Recently I was trying to create Conda Environment and wanted to install Tensorflow but i have faced some issue , so i have done some research and done trouble shooting related to that . Here am going to share how to trouble shoot if you are getting Conda Value error while creating Conda environment and install tensorflow
.


  1. Open Anaconda Prompt (as administrator if it was installed for all users)
  2. Run conda update conda
  3. Run the installer again
Make sure all pkg are updated:





Launch the console from Anaconda Navigator and
conda create -n mypython python=3.6.8

After Installing Conda environment please active the conda now : conda activate mypython
once conda environment has been activated kindly install tensorflow 2.0 by using this command pip install tensorflow==2.0.0




once Tensorflow has been successfully install kindly run the command : pip show tensorflow
Try to Run Comman PIP Install Jupyter lab and after installing launch the console and open Jupyter notebook
Happy Learning...!!

Comments

  1. Thanks Anand its really help and guide me solve very similar issue.

    ReplyDelete

Post a Comment

Popular posts from this blog

Differentiate between univariate, bivariate and multivariate analysis.

Univariate analysis are descriptive statistical analysis techniques which can be differentiated based on one variable involved at a given point of time. For example, the pie charts of sales based on territory involve only one variable and can the analysis can be referred to as univariate analysis. The bivariate analysis attempts to understand the difference between two variables at a time as in a scatterplot. For example, analyzing the volume of sale and spending can be considered as an example of bivariate analysis. Multivariate analysis deals with the study of more than two variables to understand the effect of variables on the responses.

R vs Python: Who is the Winner according to me...!!

As a data scientist, you probably want and need to learn Structured Query Language, or SQL. SQL is the de-facto language of relational databases, where most corporate information still resides. But that only gives you the ability to retrieve the data — not to clean it up or run models against it — and that’s where Python and R come in.R and Python both share similar features and are the most popular tools used by data scientists. Both are open-source and henceforth free yet Python is structured as a broadly useful programming language while R is created for statistical analysis. A little background on R R was created by Ross Ihaka and Robert Gentleman — two statisticians from the University of Auckland in New Zealand. It was initially released in 1995 and they launched a stable beta version in 2000. It’s an interpreted language (you don’t need to run it through a compiler before running the code) and has an extremely powerful suite of tools for statistical modeling and graphing