Skip to main content

20 Must know Data Science Interview Questions by kdnuggets

The Most important questions which is generally asked by the technical panel :

1. Explain what regularization is and why it is useful.
2. Which data scientists do you admire most? which startups?
3. How would you validate a model you created to generate a predictive model of a quantitative outcome variable using multiple regression.
4. Explain what precision and recall are. How do they relate to the ROC curve?
5. How can you prove that one improvement you've brought to an algorithm is really an improvement over not doing anything?
6. What is root cause analysis?
7. Are you familiar with pricing optimization, price elasticity, inventory management, competitive intelligence? Give examples.
8. What is statistical power?
9. Explain what resampling methods are and why they are useful. Also explain their limitations.
10. Is it better to have too many false positives, or too many false negatives? Explain.
11. What is selection bias, why is it important and how can you avoid it?
12. Give an example of how you would use experimental design to answer a question about user behavior.
13. What is the difference between "long" and "wide" format data?
14. What method do you use to determine whether the statistics published in an article (e.g. newspaper) are either wrong or presented to support the author's point of view, rather than correct, comprehensive factual information on a specific subject?
15. Explain Edward Tufte's concept of "chart junk."
16. How would you screen for outliers and what should you do if you find one?
17. How would you use either the extreme value theory, Monte Carlo simulations or mathematical statistics (or anything else) to correctly estimate the chance of a very rare event?
18. What is a recommendation engine? How does it work?
19. Explain what a false positive and a false negative are. Why is it important to differentiate these from each other?
20. Which tools do you use for visualization? What do you think of Tableau? R? SAS? (for graphs). How to efficiently represent 5 dimension in a chart (or in a video)?

Answers from kdnuggets : https://www.kdnuggets.com/2016/02/21-data-science-interview-questions-answers.html

Happy Learning...!!

Comments

Popular posts from this blog

Data Science Methodology- A complete Overview

The people who work in Data Science and are busy finding the answers for different questions every day comes across the Data Science Methodology. Data Science Methodology indicates the routine for finding solutions to a specific problem. This is a cyclic process that undergoes a critic behaviour guiding business analysts and data scientists to act accordingly. Business Understanding: Before solving any problem in the Business domain it needs to be understood properly. Business understanding forms a concrete base, which further leads to easy resolution of queries. We should have the clarity of what is the exact problem we are going to solve. Analytic Understanding: Based on the above business understanding one should decide the analytical approach to follow. The approaches can be of 4 types: Descriptive approach (current status and information provided), Diagnostic approach(a.k.a statistical analysis, what is happening and why it is happening), Predictive approach(it forecasts on...

Data is the New oil of Industry?

Let's go back to 18th century ,when development was taking its first footstep.The time when oil was considered to be the subset of industrial revolution. Oil than tends to be the most valuable asset in those time. Now let's come back in present. In 21st century, data is vigorously called the foundation of information revolution. But the question that arises is why are we really calling data as the new oil. Well for it's explanation Now we are going to compare Data Vs Oil Data is an essential resource that powers the information economy in much the way that oil has fueled the industrial economy. Once upon a time, the wealthiest were those with most natural resources, now it’s knowledge economy, where the more you know is proportional to more data that you have. Information can be extracted from data just as energy can be extracted from oil. Traditional Oil powered the transportation era, in the same way that Data as the new oil is also powering the emerging transportation op...

Future of Data Science

It is rightly said that Data Scientists would be shaping the future of the businesses in the years to come. And trust me they are already on their path to do so. Over the years, data is constantly being generated and collected as well. Now, the field of data sciences has put this humongous pile of data to good use. Now, data can be collected, processed, analyzed and converted into a highly useful piece of information that would benefit the businesses with better and well-informed decision-making capability. "Data is a Precious Thing and will Last Longer than the Systems themselves." Also, Vinod Khosla, an American Billionaire Businessman and Co-founder of Sun Microsystems declared – "In the next 10 years, Data Science and Software will do more for Medicines than all of the Biological Sciences together." By the above two statements, it is clear that data proliferation will never end and because of that, the use of data related technologies like Data Science and Big D...