Skip to main content

20 Must know Data Science Interview Questions by kdnuggets

The Most important questions which is generally asked by the technical panel :

1. Explain what regularization is and why it is useful.
2. Which data scientists do you admire most? which startups?
3. How would you validate a model you created to generate a predictive model of a quantitative outcome variable using multiple regression.
4. Explain what precision and recall are. How do they relate to the ROC curve?
5. How can you prove that one improvement you've brought to an algorithm is really an improvement over not doing anything?
6. What is root cause analysis?
7. Are you familiar with pricing optimization, price elasticity, inventory management, competitive intelligence? Give examples.
8. What is statistical power?
9. Explain what resampling methods are and why they are useful. Also explain their limitations.
10. Is it better to have too many false positives, or too many false negatives? Explain.
11. What is selection bias, why is it important and how can you avoid it?
12. Give an example of how you would use experimental design to answer a question about user behavior.
13. What is the difference between "long" and "wide" format data?
14. What method do you use to determine whether the statistics published in an article (e.g. newspaper) are either wrong or presented to support the author's point of view, rather than correct, comprehensive factual information on a specific subject?
15. Explain Edward Tufte's concept of "chart junk."
16. How would you screen for outliers and what should you do if you find one?
17. How would you use either the extreme value theory, Monte Carlo simulations or mathematical statistics (or anything else) to correctly estimate the chance of a very rare event?
18. What is a recommendation engine? How does it work?
19. Explain what a false positive and a false negative are. Why is it important to differentiate these from each other?
20. Which tools do you use for visualization? What do you think of Tableau? R? SAS? (for graphs). How to efficiently represent 5 dimension in a chart (or in a video)?

Answers from kdnuggets : https://www.kdnuggets.com/2016/02/21-data-science-interview-questions-answers.html

Happy Learning...!!

Comments

Popular posts from this blog

Data is the New oil of Industry?

Let's go back to 18th century ,when development was taking its first footstep.The time when oil was considered to be the subset of industrial revolution. Oil than tends to be the most valuable asset in those time. Now let's come back in present. In 21st century, data is vigorously called the foundation of information revolution. But the question that arises is why are we really calling data as the new oil. Well for it's explanation Now we are going to compare Data Vs Oil Data is an essential resource that powers the information economy in much the way that oil has fueled the industrial economy. Once upon a time, the wealthiest were those with most natural resources, now it’s knowledge economy, where the more you know is proportional to more data that you have. Information can be extracted from data just as energy can be extracted from oil. Traditional Oil powered the transportation era, in the same way that Data as the new oil is also powering the emerging transportation op...

Important Python Libraries for Data Science

Python is the most widely used programming language today. When it comes to solving data science tasks and challenges, Python never ceases to surprise its users. Most data scientists are already leveraging the power of Python programming every day. Python is an easy-to-learn, easy-to-debug, widely used, object-oriented, open-source, high-performance language, and there are many more benefits to Python programming.People in Data Science definitely know about the Python libraries that can be used in Data Science but when asked in an interview to name them or state its function, we often fumble up or probably not remember more than 5 libraries. Important Python Libraries for Data Science: Pandas NumPy SciPy Matplotlib TensorFlow Seaborn Scikit Learn Keras 1. Pandas Pandas (Python data analysis) is a must in the data science life cycle. It is the most popular and widely used Python library for data science, along with NumPy in matplotlib. With around 17,00 comments on GitH...

Differentiate between univariate, bivariate and multivariate analysis.

Univariate analysis are descriptive statistical analysis techniques which can be differentiated based on one variable involved at a given point of time. For example, the pie charts of sales based on territory involve only one variable and can the analysis can be referred to as univariate analysis. The bivariate analysis attempts to understand the difference between two variables at a time as in a scatterplot. For example, analyzing the volume of sale and spending can be considered as an example of bivariate analysis. Multivariate analysis deals with the study of more than two variables to understand the effect of variables on the responses.