Skip to main content

Math Skills required for Data Science Aspirants

The knowledge of this essential math is particularly important for newcomers arriving at data science from other professions, Specially whosoever wanted to transit their career in to Data Science field (Aspirant). Because mathematics is backbone of Data science , you must have knowledge to deal with data, behind any algorithm mathematics plays an important role. Here am going to iclude some of the topics which is Important if you dont have maths background. 

1. Statistics and Probability
2. Calculus (Multivariable)
3. Linear Algebra
4.  Methods for Optimization
5. Numerical Analysis

1. Statistics and Probability

Statistics and Probability is used for visualization of features, data preprocessing, feature transformation, data imputation, dimensionality reduction, feature engineering, model evaluation, etc.

Here are the topics you need to be familiar with: Mean, Median, Mode, Standard deviation/variance, Correlation coefficient and the covariance matrix, Probability distributions (Binomial, Poisson, Normal), p-value, Baye’s Theorem (Precision, Recall, Positive Predictive Value, Negative Predictive Value, Confusion Matrix, ROC Curve), Central Limit Theorem, R_2 score, Mean Square Error (MSE), A/B Testing, Monte Carlo Simulation

2. Multivariable Calculus

Most machine learning models are built with a dataset having several features or predictors. Hence, familiarity with multivariable calculus is extremely important for building a machine learning model.

Here are the topics you need to be familiar with: Functions of several variables; Derivatives and gradients; Step function, Sigmoid function, Logit function, ReLU (Rectified Linear Unit) function; Cost function; Plotting of functions; Minimum and Maximum values of a function

3. Linear Algebra

Linear algebra is the most important math skill in machine learning. A data set is represented as a matrix. Linear algebra is used in data preprocessing, data transformation, dimensionality reduction, and model evaluation.

Here are the topics you need to be familiar with: Vectors; Norm of a vector; Matrices; Transpose of a matrix; The inverse of a matrix; The determinant of a matrix; Trace of a Matrix; Dot product; Eigenvalues; Eigenvectors

4. Optimization Methods

Most machine learning algorithms perform predictive modeling by minimizing an objective function, thereby learning the weights that must be applied to the testing data in order to obtain the predicted labels.

Here are the topics you need to be familiar with: Cost function/Objective function; Likelihood function; Error function; Gradient Descent Algorithm and its variants (e.g. Stochastic Gradient Descent Algorithm)

5. Numerical Analysis

Its very good to have numerical analysis knowledge like time series analysis , forecasting

Best Youtube channel to learn:


Best Blog to read :

https://towardsdatascience.com/

 

Comments

Popular posts from this blog

Data Science Methodology- A complete Overview

The people who work in Data Science and are busy finding the answers for different questions every day comes across the Data Science Methodology. Data Science Methodology indicates the routine for finding solutions to a specific problem. This is a cyclic process that undergoes a critic behaviour guiding business analysts and data scientists to act accordingly. Business Understanding: Before solving any problem in the Business domain it needs to be understood properly. Business understanding forms a concrete base, which further leads to easy resolution of queries. We should have the clarity of what is the exact problem we are going to solve. Analytic Understanding: Based on the above business understanding one should decide the analytical approach to follow. The approaches can be of 4 types: Descriptive approach (current status and information provided), Diagnostic approach(a.k.a statistical analysis, what is happening and why it is happening), Predictive approach(it forecasts on...

Data is the New oil of Industry?

Let's go back to 18th century ,when development was taking its first footstep.The time when oil was considered to be the subset of industrial revolution. Oil than tends to be the most valuable asset in those time. Now let's come back in present. In 21st century, data is vigorously called the foundation of information revolution. But the question that arises is why are we really calling data as the new oil. Well for it's explanation Now we are going to compare Data Vs Oil Data is an essential resource that powers the information economy in much the way that oil has fueled the industrial economy. Once upon a time, the wealthiest were those with most natural resources, now it’s knowledge economy, where the more you know is proportional to more data that you have. Information can be extracted from data just as energy can be extracted from oil. Traditional Oil powered the transportation era, in the same way that Data as the new oil is also powering the emerging transportation op...

Future of Data Science

It is rightly said that Data Scientists would be shaping the future of the businesses in the years to come. And trust me they are already on their path to do so. Over the years, data is constantly being generated and collected as well. Now, the field of data sciences has put this humongous pile of data to good use. Now, data can be collected, processed, analyzed and converted into a highly useful piece of information that would benefit the businesses with better and well-informed decision-making capability. "Data is a Precious Thing and will Last Longer than the Systems themselves." Also, Vinod Khosla, an American Billionaire Businessman and Co-founder of Sun Microsystems declared – "In the next 10 years, Data Science and Software will do more for Medicines than all of the Biological Sciences together." By the above two statements, it is clear that data proliferation will never end and because of that, the use of data related technologies like Data Science and Big D...