Skip to main content

Daily Task performed by Data Scientist at Work place - Life of a Data Scientist

Data Science is a multidimensional field that uses scientific methods, tools, and algorithms to extract knowledge and insights from structured and unstructured data.But in reality, he does so much more than just studying the data. I agree that all his work is related to data but it involves a number of other processes based on data.Data Science is a multidisciplinary field. It involves the systematic blend of scientific and statistical methods, processes, algorithm development and technologies to extract meaningful information from data.

The average Data Scientist’s work week as follows:

Typical work weeks devour around 50 hours.
The Data Scientists generally maintain internal records of daily results.
The Data Scientists also keep extensive notes on their modeling projects for repeatable processes.
The good Data Scientists can begin their career with a $80k salary, and the high-end experts can hope to make $400K.
The industry attrition rate for DS is high as organizations frequently lack a plan or visions for utilizing these professionals.

"Data Scientists was that when an algorithm actually solves a real-world business problem, the feeling of pride and satisfaction that comes with it is the greatest reward for the professional."





Working With Data, Data Everywhere

A data scientist’s daily tasks revolve around data, which is no surprise given the job title. Data scientists spend much of their time gathering data, looking at data, shaping data, but in many different ways and for many different reasons. Data-related tasks that a data scientist might tackle include:

Pulling data
Merging data
Analyzing data
Looking for patterns or trends
Using a wide variety of tools, including R, Tableau, Python, Matlab, Hive, Impala, PySpark, Excel, Hadoop, SQL and/or SAS
Developing and testing new algorithms
Trying to simplify data problems
Developing predictive models
Building data visualizations
Writing up results to share with others
Pulling together proofs of concepts
All these tasks are secondary to a data scientist’s real role, however: Data scientists are primarily problem solvers. Working with this data also means understanding the goal. Data scientists must also seek to determine the questions that need answers, and then come up with different approaches to try and solve the problem.

Now we have understood the process of data science. This was a look at a day in data scientist job and his tasks. Specific tasks include:

  • Identifying the analytical problems related to data that offer great opportunities to an organization.
  • Collecting large sets of structured and unstructured data from all different kinds of sources.
  • Determining the correct data sets and variables.
  • Cleaning and eliminating errors from the data to ensure accuracy and completeness.
  • Coming up with and applying models, algorithms, and techniques to mine the stores of big data.
  • Analyzing the data to uncover hidden patterns and trends.
  • Interpreting the data to discover solutions and opportunities and making decisions based on it.
  • Communicating findings to managers and other people using visualization and other means.

Comments

Popular posts from this blog

Data Science Methodology- A complete Overview

The people who work in Data Science and are busy finding the answers for different questions every day comes across the Data Science Methodology. Data Science Methodology indicates the routine for finding solutions to a specific problem. This is a cyclic process that undergoes a critic behaviour guiding business analysts and data scientists to act accordingly. Business Understanding: Before solving any problem in the Business domain it needs to be understood properly. Business understanding forms a concrete base, which further leads to easy resolution of queries. We should have the clarity of what is the exact problem we are going to solve. Analytic Understanding: Based on the above business understanding one should decide the analytical approach to follow. The approaches can be of 4 types: Descriptive approach (current status and information provided), Diagnostic approach(a.k.a statistical analysis, what is happening and why it is happening), Predictive approach(it forecasts on...

Data is the New oil of Industry?

Let's go back to 18th century ,when development was taking its first footstep.The time when oil was considered to be the subset of industrial revolution. Oil than tends to be the most valuable asset in those time. Now let's come back in present. In 21st century, data is vigorously called the foundation of information revolution. But the question that arises is why are we really calling data as the new oil. Well for it's explanation Now we are going to compare Data Vs Oil Data is an essential resource that powers the information economy in much the way that oil has fueled the industrial economy. Once upon a time, the wealthiest were those with most natural resources, now it’s knowledge economy, where the more you know is proportional to more data that you have. Information can be extracted from data just as energy can be extracted from oil. Traditional Oil powered the transportation era, in the same way that Data as the new oil is also powering the emerging transportation op...

Future of Data Science

It is rightly said that Data Scientists would be shaping the future of the businesses in the years to come. And trust me they are already on their path to do so. Over the years, data is constantly being generated and collected as well. Now, the field of data sciences has put this humongous pile of data to good use. Now, data can be collected, processed, analyzed and converted into a highly useful piece of information that would benefit the businesses with better and well-informed decision-making capability. "Data is a Precious Thing and will Last Longer than the Systems themselves." Also, Vinod Khosla, an American Billionaire Businessman and Co-founder of Sun Microsystems declared – "In the next 10 years, Data Science and Software will do more for Medicines than all of the Biological Sciences together." By the above two statements, it is clear that data proliferation will never end and because of that, the use of data related technologies like Data Science and Big D...